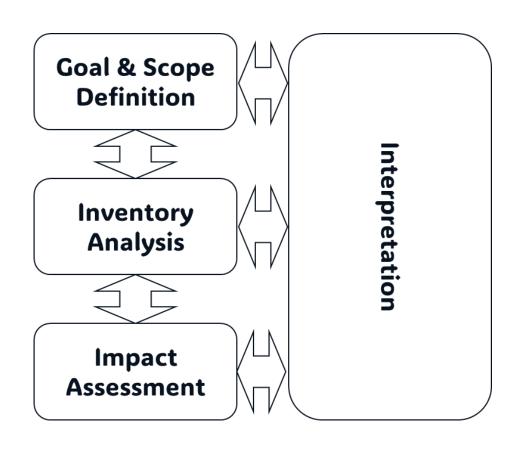


A Life Cycle Assessment (LCA) Approach to Reducing Loss & Waste.

Ramim Ghamkhar, PhD, Consultant, BSI

IDDBA Member exclusive access!

Download the recording and slide deck at iddba.org. (Available in 24-48 hours)


Introduction to Life Cycle Assessment (LCA)

Definition:

 Life Cycle Assessment (LCA) is a systematic method to evaluate the environmental impacts of products, processes, or services through their entire life cycle.

Stages of LCA:

- Goal and Scope Definition
- Inventory Analysis
- Impact Assessment
- Interpretation

General Concepts of LCA

- Life Cycle Thinking: Considers all stages from raw material extraction through materials processing, manufacturing, distribution, use, repair and maintenance, and disposal or recycling.
- Cradle-to-Grave Approach: Full life cycle from creation to disposal.
- Cradle-to-Cradle Approach: A circular approach focusing on the reuse of materials in a sustainable cycle.

Raw Materials Acquisition Manufacturing Distribution Use Disposal

Importance of LCA in the Food Sector

A Key Tool for Sustainable Food Systems

Resource Efficiency:

Identifying hotspots where resources are wasted.

Environmental Impact:

Reducing greenhouse gas emissions, water use, and energy consumption.

Economic Benefits:

Lowering costs through more efficient processes.

Consumer Awareness:

Promoting sustainable practices to end-users.

Case Study: Reducing Food Waste in Tomato Supply Chain

Goal and Scope Definition: Minimize food waste from farm to retail in the tomato supply chain.

Functional Unit: 1 kg of tomatoes delivered to the consumer.

Inventory Analysis

Data Collection

Transportation

Processing

Packaging

Retail

Agricultural inputs

_

energy

materials disposal storage waste

water fertilizers pesticides fuel use emissions

energy water use

Impact Assessment

Agricultural Stage:

Current Impact:

- Water Use: 200 liters/kg of tomatoes.
- Pesticide Use: 2.5 kg/ha.

Optimized Impact:

- Water Use: 150 liters/kg (25% reduction).
- Pesticide Use: 1.5 kg/ha (40% reduction).

Transportation Stage:

Current Impact:

- Fuel Consumption: 0.05 liters/km per kg of tomatoes.
- Emissions: 0.13 kg CO2e/kg.

Optimized Impact:

- Fuel Consumption: 0.04 liters/km (20% reduction).
- Emissions: 0.10 kg CO2e/kg (23% reduction).

Processing Stage:

Current Impact:

- Energy Use: 3.5 kWh/kg.
- Water Use: 50 liters/kg.

Optimized Impact:

- Energy Use: 2.5 kWh/kg (29% reduction).
- Water Use: 35 liters/kg (30% reduction).

Packaging Stage:

Current Impact:

- Plastic Use: 30g/kg of tomatoes.
- Waste Generation: 10g/kg.

Optimized Impact:

- Plastic Use: 20g/kg (33% reduction) using biodegradable materials.
- Waste Generation: 5g/kg (50% reduction).

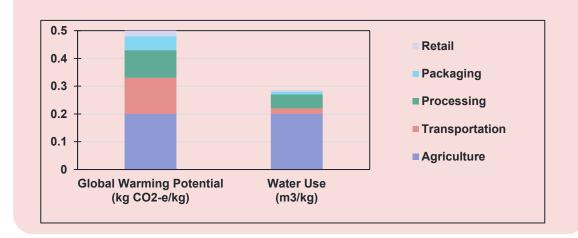
Retail Stage:

Current Impact:

 Food Waste: 15% of total tomatoes.

Optimized Impact:

 Food Waste: 10% (33% reduction) through improved storage and inventory management.



Interpretation and Optimization

Identify Hotspots:

Where the most significant environmental impacts occur.

Implement Solutions:

- □ Precision agriculture techniques.
- ☐ Efficient logistics planning.
- ☐ Sustainable packaging options.
- □Enhanced retail storage and inventory management.

Results

Reduction in Food Waste: Achieved through improved agricultural practices and better storage.

Environmental Benefits: Lower emissions, reduced water and energy use.

Economic Savings: Reduced costs associated with waste disposal and resource use.

Wrap up

Summary:

LCA provides a comprehensive framework to analyze and improve the sustainability of the food supply chain.

Key Takeaways:

- Importance of considering all life cycle stages.
- Potential for significant environmental and economic benefits.

Emphasizing Life Cycle Thinking:

- Beyond LCA: Embrace Life Cycle Thinking (LCT) for continuous improvement.
- Holistic Approach:

 Integrating LCT in business
 strategies leads to
 sustainable innovation.

Questions & Discussions

Open floor for questions and further discussion on implementing LCA and LCT in the food sector.

Thank you for your attention and participation

Feel free to contact us for future queries:

- Neil.Coole@bsigroup.com
 Global Director Consumer, Retail and Food
- <u>Gary.Wills@bsigroup.com</u> Business Development Director Consumer, Retail and Food
- Ramin.Ghamkhar@bsigroup.com LCA Service Lead Consulting Services

